lower bound:  71 
upper bound:  89 
Construction of a linear code [230,41,71] over GF(2): [1]: [255, 45, 87] Cyclic Linear Code over GF(2) CyclicCode of length 255 with generating polynomial x^210 + x^209 + x^207 + x^205 + x^199 + x^194 + x^192 + x^191 + x^190 + x^185 + x^183 + x^182 + x^180 + x^178 + x^175 + x^174 + x^173 + x^168 + x^167 + x^166 + x^162 + x^159 + x^157 + x^156 + x^153 + x^150 + x^144 + x^142 + x^141 + x^140 + x^137 + x^136 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^115 + x^114 + x^108 + x^107 + x^105 + x^104 + x^103 + x^100 + x^99 + x^98 + x^97 + x^95 + x^94 + x^93 + x^85 + x^83 + x^80 + x^77 + x^76 + x^75 + x^71 + x^70 + x^69 + x^68 + x^67 + x^64 + x^61 + x^60 + x^59 + x^58 + x^57 + x^55 + x^54 + x^49 + x^48 + x^46 + x^45 + x^43 + x^37 + x^33 + x^32 + x^30 + x^29 + x^28 + x^27 + x^22 + x^20 + x^18 + x^14 + x^12 + x^9 + x^8 + x^6 + x^5 + 1 [2]: [251, 41, 87] Linear Code over GF(2) Shortening of [1] at { 1, 2, 3, 4 } [3]: [230, 41, 71] Linear Code over GF(2) Puncturing of [2] at { 51, 61, 65, 69, 76, 90, 102, 123, 125, 144, 159, 178, 181, 189, 210, 212, 213, 229, 248, 249, 250 } last modified: 20210830
Lb(230,41) = 68 is found by taking a subcode of: Lb(230,42) = 68 is found by shortening of: Lb(232,44) = 68 BZ Ub(230,41) = 89 is found by considering shortening to: Ub(220,31) = 89 BK
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218222.
Notes
