lower bound:  63 
upper bound:  86 
Construction of a linear code [234,51,63] over GF(2): [1]: [234, 51, 63] Quasicyclic of degree 2 Linear Code over GF(2) QuasiCyclicCode of length 234 stacked to height 2 with generating polynomials: x^67 + x^59 + x^54 + x^51 + x^49 + x^42 + x^39 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^27 + x^26 + x^25 + x^24 + x^22 + x^21 + x^19 + x^17 + x^16 + x^15 + x^14 + x^13 + x^11 + x^6 + x^5 + x^3 + x^2 + 1, x^184 + x^183 + x^182 + x^178 + x^177 + x^175 + x^174 + x^171 + x^170 + x^169 + x^167 + x^165 + x^163 + x^162 + x^161 + x^159 + x^157 + x^154 + x^150 + x^149 + x^148 + x^147 + x^146 + x^145 + x^140 + x^137 + x^136 + x^135 + x^132 + x^131 + x^127 + x^123 + x^121 + x^120 + x^118 + x^116 + x^115 + x^114 + x^110 + x^109 + x^107 + x^105 + x^104 + x^102 + x^100 + x^98 + x^94 + x^91 + x^90 + x^89 + x^87 + x^86 + x^83 + x^80 + x^79 + x^78 + x^77 + x^74 + x^73 + x^68 + x^66 + x^65 + x^63 + x^62 + x^59 + x^57 + x^56 + x^55 + x^53 + x^52 + x^51 + x^46 + x^45 + x^42 + x^41 + x^39 + x^38 + x^34 + x^31 + x^30 + x^27 + x^23 + x^19 + x^13 + x^12 + x^10 + x^9 + 1, 0, x^116 + x^115 + x^114 + x^113 + x^112 + x^111 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^76 + x^75 + x^74 + x^73 + x^72 + x^71 + x^70 + x^69 + x^68 + x^67 + x^66 + x^65 + x^64 + x^63 + x^62 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^54 + x^53 + x^52 + x^51 + x^50 + x^49 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 last modified: 20220811
Lb(234,51) = 60 is found by taking a subcode of: Lb(234,53) = 60 is found by shortening of: Lb(240,59) = 60 BZ Ub(234,51) = 86 is found by considering shortening to: Ub(225,42) = 86 otherwise adding a parity check bit would contradict: Ub(226,42) = 87 is found by construction B: [consider deleting the (at most) 14 coordinates of a word in the dual]
Notes
