lower bound:  62 
upper bound:  86 
Construction of a linear code [234,52,62] over GF(2): [1]: [234, 52, 62] Quasicyclic of degree 2 Linear Code over GF(2) QuasiCyclicCode of length 234 stacked to height 2 with generating polynomials: x^67 + x^59 + x^54 + x^51 + x^49 + x^42 + x^39 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^27 + x^26 + x^25 + x^24 + x^22 + x^21 + x^19 + x^17 + x^16 + x^15 + x^14 + x^13 + x^11 + x^6 + x^5 + x^3 + x^2 + 1, x^284 + x^281 + x^280 + x^278 + x^277 + x^274 + x^273 + x^271 + x^268 + x^265 + x^264 + x^260 + x^259 + x^257 + x^255 + x^252 + x^251 + x^249 + x^246 + x^245 + x^240 + x^238 + x^235 + x^233 + x^229 + x^228 + x^221 + x^220 + x^215 + x^209 + x^207 + x^206 + x^204 + x^203 + x^202 + x^201 + x^200 + x^197 + x^195 + x^191 + x^190 + x^187 + x^185 + x^184 + x^180 + x^179 + x^175 + x^173 + x^170 + x^169 + x^164 + x^163 + x^162 + x^161 + x^160 + x^157 + x^156 + x^153 + x^152 + x^149 + x^148 + x^147 + x^146 + x^143 + x^141 + x^137 + x^135 + x^134 + x^132 + x^131 + x^129 + x^127 + x^124 + x^121 + x^119 + x^118 + x^116 + x^113 + x^112 + x^111 + x^105 + x^104 + x^103 + x^101 + x^100 + x^99 + x^98 + x^97 + x^96 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^84 + x^80 + x^78 + x^76 + x^75 + x^74 + x^73 + x^71 + x^68 + x^64 + x^62 + x^56 + x^54 + x^53 + x^52 + x^47 + x^44 + x^43 + x^42 + x^40 + x^39 + x^35 + x^34 + x^33 + x^31 + x^30 + x^26 + x^25 + x^24 + x^23 + x^21 + x^19 + x^17 + x^14 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^4 + x^2 + 1, 0, x^115 + x^114 + x^112 + x^111 + x^109 + x^108 + x^106 + x^105 + x^103 + x^102 + x^100 + x^99 + x^97 + x^96 + x^94 + x^93 + x^91 + x^90 + x^88 + x^87 + x^85 + x^84 + x^82 + x^81 + x^79 + x^78 + x^76 + x^75 + x^73 + x^72 + x^70 + x^69 + x^67 + x^66 + x^64 + x^63 + x^61 + x^60 + x^58 + x^57 + x^55 + x^54 + x^52 + x^51 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^40 + x^39 + x^37 + x^36 + x^34 + x^33 + x^31 + x^30 + x^28 + x^27 + x^25 + x^24 + x^22 + x^21 + x^19 + x^18 + x^16 + x^15 + x^13 + x^12 + x^10 + x^9 + x^7 + x^6 + x^4 + x^3 + x + 1 last modified: 20220811
Lb(234,52) = 60 is found by taking a subcode of: Lb(234,53) = 60 is found by shortening of: Lb(240,59) = 60 BZ Ub(234,52) = 86 is found by considering shortening to: Ub(211,29) = 86 otherwise adding a parity check bit would contradict: Ub(212,29) = 87 BK
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218222.
Notes
