lower bound: | 69 |
upper bound: | 88 |
Construction of a linear code [235,47,69] over GF(2): [1]: [255, 47, 85] Cyclic Linear Code over GF(2) CyclicCode of length 255 with generating polynomial x^208 + x^206 + x^204 + x^202 + x^201 + x^199 + x^198 + x^197 + x^195 + x^194 + x^190 + x^183 + x^182 + x^181 + x^180 + x^176 + x^175 + x^172 + x^170 + x^169 + x^167 + x^164 + x^163 + x^161 + x^159 + x^158 + x^157 + x^154 + x^153 + x^148 + x^147 + x^145 + x^144 + x^140 + x^135 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^119 + x^118 + x^115 + x^112 + x^111 + x^109 + x^108 + x^105 + x^104 + x^103 + x^102 + x^101 + x^99 + x^96 + x^94 + x^91 + x^90 + x^88 + x^87 + x^85 + x^84 + x^83 + x^78 + x^77 + x^74 + x^72 + x^71 + x^68 + x^65 + x^64 + x^59 + x^56 + x^54 + x^47 + x^45 + x^41 + x^40 + x^38 + x^37 + x^31 + x^29 + x^26 + x^24 + x^23 + x^21 + x^19 + x^17 + x^15 + x^14 + x^10 + x^9 + x^6 + x^5 + x^4 + x^3 + x + 1 [2]: [235, 47, 69] Linear Code over GF(2) Puncturing of [1] at { 1, 29, 48, 49, 65, 82, 99, 116, 127, 133, 150, 167, 184, 201, 218, 235, 239, 240, 252, 254 } last modified: 2021-08-30
Lb(235,47) = 65 is found by shortening of: Lb(236,48) = 65 XB Ub(235,47) = 88 is found by considering shortening to: Ub(219,31) = 88 otherwise adding a parity check bit would contradict: Ub(220,31) = 89 BK
XB:
Notes
|