lower bound:  37 
upper bound:  48 
Construction of a linear code [102,27,37] over GF(3): [1]: [3, 2, 2] Cyclic Linear Code over GF(3) Dual of the RepetitionCode of length 3 [2]: [99, 25, 37] Quasicyclic of degree 3 Linear Code over GF(3) QuasiCyclicCode of length 99 with generating polynomials: x^29 + 2*x^28 + 2*x^27 + 2*x^26 + x^25 + x^12, x^32 + 2*x^31 + 2*x^29 + 2*x^28 + 2*x^27 + x^25 + 2*x^23 + 2*x^22 + 2*x^21 + 2*x^19 + 2*x^18 + x^17 + x^16 + 2*x^15 + 2*x^14 + 2*x^13 + x^12 + x^11 + 2*x^10 + 2*x^8 + 2*x^7 + x^6 + x^4 + x^2 + x + 2, 2*x^32 + x^31 + x^29 + x^28 + 2*x^27 + x^26 + 2*x^25 + x^23 + 2*x^22 + x^21 + 2*x^19 + x^18 + 2*x^15 + x^14 + x^11 + 2*x^10 + x^9 + 2*x^7 + x^6 + x^4 + x^3 + 2*x^2 + 2*x [3]: [99, 27, 35] Quasicyclic of degree 3 Linear Code over GF(3) QuasiCyclicCode of length 99 with generating polynomials: x^32 + x^31 + x^29 + x^28 + x^27 + x, 2*x^29 + 2*x^28 + x^27 + 2*x^24 + x^22 + x^20 + 2*x^19 + 2*x^18 + 2*x^14 + x^13 + x^12 + x^10 + 2*x^9 + x^8 + 2*x^7 + 2*x^6 + 2*x^5 + x^4 + 2*x^3, 2*x^32 + 2*x^31 + x^30 + 2*x^28 + x^27 + 2*x^26 + x^25 + 2*x^23 + x^22 + 2*x^21 + x^20 + x^18 + x^17 + x^16 + 2*x^15 + x^13 + 2*x^12 + 2*x^11 + x^8 + 2*x^7 + 2*x^6 + x^5 + x^4 + 2*x [4]: [102, 27, 37] Linear Code over GF(3) ConstructionX using [3] [2] and [1] last modified: 20210829
Lb(102,27) = 34 is found by taking a subcode of: Lb(102,33) = 34 is found by shortening of: Lb(103,34) = 34 Glo Ub(102,27) = 48 is found by considering shortening to: Ub(100,25) = 48 Da
Glo: Volker von Gloeden, Kubische Reste Codes, Diplomarbeit, DÃ¼sseldorf, Oktober 2002.
Notes
