lower bound:  43 
upper bound:  54 
Construction of a linear code [107,23,43] over GF(3): [1]: [3, 2, 2] Cyclic Linear Code over GF(3) Dual of the RepetitionCode of length 3 [2]: [104, 21, 43] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 104 with generating polynomials: x^51 + x^50 + 2*x^49 + 2*x^48 + 2*x^47 + x^44 + 2*x^42 + 2*x^41 + x^40 + 2*x^39 + x^38 + 2*x^36 + x^35 + x^33 + x^32 + x^30 + x^29 + x^28 + x^25 + x^24 + 2*x^23 + x^22 + 2*x^21 + x^19, x^50 + 2*x^49 + x^47 + x^44 + 2*x^43 + x^41 + x^40 + 2*x^39 + x^38 + x^35 + x^34 + x^31 + x^30 + 2*x^29 + 2*x^28 + x^27 + x^26 + 2*x^25 + x^23 + x^22 + 2*x^21 + x^20 + x^19 + x^8 + x^7 + 2*x^4 + x^3 + 1 [3]: [104, 23, 41] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 104 with generating polynomials: x^51 + 2*x^50 + x^49 + x^48 + 2*x^47 + 2*x^45 + x^40 + x^37 + 2*x^36 + x^35 + 2*x^34 + 2*x^32 + x^31 + 2*x^30 + 2*x^29 + 2*x^27 + 2*x^26 + 2*x^25 + 2*x^24 + x^23 + 2*x^22 + x^2, x^51 + x^48 + x^47 + 2*x^46 + 2*x^44 + x^42 + 2*x^40 + x^39 + x^37 + 2*x^35 + x^34 + 2*x^33 + x^30 + 2*x^29 + x^27 + x^25 + 2*x^24 + x^23 + x^22 + x^21 + 2*x^20 + x^19 + 2*x^18 + x^17 + 2*x^16 + x^15 + 2*x^14 + x^13 + 2*x^12 + 2*x^11 + 2*x^10 + 2*x^9 + x^7 + 2*x^6 + 2*x^5 + 2*x^2 + 2*x [4]: [107, 23, 43] Linear Code over GF(3) ConstructionX using [3] [2] and [1] last modified: 20210826
Lb(107,23) = 41 is found by lengthening of: Lb(105,23) = 41 DaH Ub(107,23) = 54 is found by considering shortening to: Ub(106,22) = 54 LP
LP: Follows from the linear programming bound.
Notes
