lower bound:  48 
upper bound:  61 
Construction of a linear code [124,28,48] over GF(3): [1]: [12, 6, 6] Linear Code over GF(3) Extend the QRCode over GF(3)of length 11 [2]: [112, 22, 48] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 112 with generating polynomials: x^55 + 2*x^53 + 2*x^52 + x^51 + 2*x^49 + x^48 + 2*x^47 + x^46 + 2*x^45 + x^43 + 2*x^40 + 2*x^38 + x^36 + x^35 + 2*x^34 + x^33 + 2*x^32 + 2*x^31 + 2*x^29 + 2*x^27 + x^26 + x^25 + x^24 + x^23 + 2*x^22 + x^2, x^55 + 2*x^53 + 2*x^52 + x^50 + x^49 + 2*x^47 + 2*x^46 + 2*x^44 + x^43 + x^42 + x^40 + 2*x^36 + 2*x^35 + x^34 + x^33 + x^32 + 2*x^31 + 2*x^30 + x^27 + 2*x^26 + x^25 + x^24 + 2*x^20 + 2*x^19 + 2*x^17 + x^13 + x^12 + 2*x^10 + 2*x^9 + 2*x^8 + 2 [3]: [112, 28, 42] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 112 with generating polynomials: 2*x^55 + 2*x^54 + 2*x^53 + x^50 + 2*x^49 + 2*x^48 + x^47 + x^45 + x^44 + x^41 + x^40 + x^37 + x^36 + x^35 + x^34 + 2*x^33 + x^32 + 2*x^31 + x^30 + x^8, x^54 + x^53 + x^52 + 2*x^51 + x^50 + 2*x^49 + 2*x^47 + 2*x^46 + x^43 + x^42 + x^40 + x^39 + x^37 + x^35 + x^34 + 2*x^33 + 2*x^32 + x^31 + 2*x^30 + 2*x^29 + 2*x^28 + 2*x^27 + 2*x^25 + x^24 + 2*x^23 + x^20 + x^19 + x^18 + 2*x^16 + 2*x^14 + 2*x^13 + x^11 + x^10 + x^9 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1 [4]: [124, 28, 48] Linear Code over GF(3) ConstructionX using [3] [2] and [1] last modified: 20210826
Lb(124,28) = 43 is found by taking a subcode of: Lb(124,29) = 43 Ed Ub(124,28) = 61 is found by considering shortening to: Ub(122,26) = 61 LP
LP: Follows from the linear programming bound.
Notes
