lower bound: | 77 |
upper bound: | 95 |
Construction of a linear code [175,26,77] over GF(3): [1]: [12, 6, 6] Linear Code over GF(3) Extend the QRCode over GF(3)of length 11 [2]: [10, 4, 6] Linear Code over GF(3) Shortening of [1] at { 11 .. 12 } [3]: [5, 4, 2] Cyclic Linear Code over GF(3) Dual of the RepetitionCode of length 5 [4]: [160, 22, 75] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 160 with generating polynomials: x^77 + x^76 + 2*x^74 + 2*x^73 + x^72 + x^71 + x^70 + 2*x^68 + 2*x^66 + x^65 + 2*x^64 + x^59 + x^56 + x^54 + 2*x^53 + x^52 + 2*x^50 + x^49 + 2*x^48 + x^46 + 2*x^45 + 2*x^44 + x^40 + x^39 + x^38 + 2*x^37 + x^36 + 2*x^34 + x^33 + 2*x^31 + 2*x^30 + x^28 + 2*x^27 + x^23 + x^22 + x^7, x^77 + x^76 + 2*x^75 + x^74 + 2*x^71 + x^70 + 2*x^68 + x^67 + 2*x^65 + x^64 + 2*x^62 + 2*x^61 + 2*x^60 + 2*x^59 + 2*x^58 + 2*x^57 + 2*x^56 + x^53 + x^52 + 2*x^51 + x^50 + x^49 + x^48 + x^47 + 2*x^46 + 2*x^45 + 2*x^43 + 2*x^41 + 2*x^40 + 2*x^39 + 2*x^38 + 2*x^37 + 2*x^36 + x^33 + x^32 + x^31 + x^30 + x^29 + x^27 + 2*x^26 + x^25 + 2*x^24 + x^22 + x^15 + 2*x^14 + x^12 + x^11 + x^10 + 2*x^8 + x^7 + x^5 + 2*x^3 + 2*x + 1 [5]: [160, 22, 72] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 160 with generating polynomials: x^79 + x^78 + 2*x^77 + 2*x^76 + 2*x^74 + 2*x^73 + x^72 + 2*x^71 + x^70 + 2*x^67 + x^63 + x^62 + x^61 + 2*x^55 + x^53 + 2*x^52 + x^51 + x^50 + 2*x^49 + x^48 + 2*x^46 + 2*x^44 + 2*x^43 + 2*x^42 + x^41 + x^40 + 2*x^38 + x^36 + x^34 + x^33 + 2*x^32 + 2*x^28 + 2*x^27 + x^26 + x^25 + x^24 + 2*x^23 + x^22 + x, 2*x^77 + 2*x^76 + x^75 + 2*x^74 + x^72 + x^68 + 2*x^67 + 2*x^66 + 2*x^65 + x^64 + 2*x^61 + 2*x^58 + 2*x^55 + x^54 + x^51 + x^50 + x^49 + 2*x^48 + 2*x^47 + x^46 + 2*x^44 + x^43 + 2*x^42 + 2*x^39 + 2*x^38 + x^37 + x^36 + x^35 + 2*x^33 + 2*x^31 + x^28 + 2*x^26 + x^25 + 2*x^23 + 2*x^19 + 2*x^18 + 2*x^17 + 2*x^16 + 2*x^14 + 2*x^13 + x^11 + x^9 + 2*x^8 + 2*x^6 + 2*x^5 + x^4 + 2*x^3 + 2 [6]: [160, 26, 69] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 160 with generating polynomials: 2*x^79 + x^78 + 2*x^76 + x^75 + x^73 + 2*x^72 + x^71 + 2*x^70 + x^69 + x^67 + 2*x^66 + x^65 + 2*x^63 + x^62 + x^61 + 2*x^60 + x^58 + x^57 + 2*x^56 + 2*x^55 + 2*x^53 + 2*x^52 + 2*x^51 + 2*x^50 + 2*x^49 + x^48 + x^47 + x^46 + x^45 + 2*x^43 + x^40 + 2*x^39 + 2*x^36 + 2*x^33 + x^32 + 2*x^31 + 2*x^30 + 2*x^29 + x^25, x^77 + x^76 + 2*x^73 + 2*x^72 + x^71 + 2*x^70 + 2*x^69 + x^68 + x^67 + x^63 + 2*x^62 + 2*x^61 + x^60 + 2*x^58 + 2*x^57 + 2*x^56 + 2*x^54 + x^53 + 2*x^51 + 2*x^49 + 2*x^47 + x^45 + 2*x^44 + 2*x^39 + x^38 + 2*x^37 + 2*x^36 + x^35 + x^33 + 2*x^30 + x^29 + 2*x^28 + x^27 + 2*x^26 + 2*x^25 + x^24 + 2*x^22 + x^18 + 2*x^17 + x^15 + x^14 + 2*x^13 + 2*x^10 + 2*x^9 + 2*x^8 + x^7 + 2*x^6 + x^5 + 2*x^3 + x + 2 [7]: [175, 26, 77] Linear Code over GF(3) ConstructionXX using [6] [5] [4] [3] and [2] last modified: 2021-08-26
Lb(175,26) = 73 is found by taking a subcode of: Lb(175,28) = 73 is found by lengthening of: Lb(172,28) = 73 GW2 Ub(175,26) = 95 is found by considering shortening to: Ub(173,24) = 95 Da9
GW2: M. Grassl & G. White, New Codes from Chains of Quasi-cyclic Codes, ISIT 2005.
Notes
|