lower bound: | 90 |
upper bound: | 103 |
Construction of a linear code [176,17,90] over GF(3): [1]: [176, 17, 90] Quasicyclic of degree 4 Linear Code over GF(3) QuasiCyclicCode of length 176 with generating polynomials: 2*x^42 + x^41 + x^39 + x^38 + x^33 + 2*x^32 + 2*x^31 + x^29 + x^28 + 2*x^27 + x^26 + 2*x^25 + x^24 + 2*x^21 + 2*x^18 + x^17 + 2*x^14 + x^13 + 2*x^12 + x^11 + x^10 + x^9 + x^8 + 2*x^7 + 2*x^6 + 2*x^5 + x^4 + x^3, 2*x^43 + x^42 + 2*x^40 + x^38 + x^37 + x^35 + 2*x^34 + 2*x^32 + 2*x^30 + 2*x^29 + 2*x^28 + x^27 + 2*x^25 + 2*x^24 + 2*x^23 + x^22 + 2*x^21 + x^20 + 2*x^19 + x^18 + x^15 + x^13 + 2*x^12 + 2*x^11 + x^9 + 2*x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + 2*x^2, x^43 + 2*x^42 + x^41 + x^39 + 2*x^38 + 2*x^37 + x^35 + x^34 + x^32 + 2*x^31 + x^30 + x^29 + x^28 + x^27 + 2*x^26 + 2*x^23 + x^22 + x^20 + 2*x^19 + x^18 + x^17 + x^16 + x^13 + 2*x^12 + 2*x^10 + 2*x^9 + 2*x^7 + x^6 + x^3 + 2*x^2 + 2*x, 2*x^43 + x^42 + 2*x^40 + 2*x^37 + x^36 + 2*x^35 + x^34 + x^33 + 2*x^32 + 2*x^31 + x^30 + 2*x^29 + x^28 + x^27 + 2*x^26 + 2*x^25 + 2*x^24 + 2*x^23 + 2*x^21 + 2*x^20 + x^19 + 2*x^18 + x^17 + 2*x^14 + 2*x^13 + 2*x^12 + x^11 + 2*x^10 + 2*x^7 + x^5 + x^4 + 2*x^2 last modified: 2003-10-07
Lb(176,17) = 90 DaH Ub(176,17) = 103 is found by considering truncation to: Ub(175,17) = 102 Da2
DaH: Rumen Daskalov & Plamen Hristov, New One-Generator Quasi-Cyclic Codes over GF(7), preprint, Oct 2001. R. Daskalov & P Hristov, New One-Generator Quasi-Twisted Codes over GF(5), (preprint) Oct. 2001. R. Daskalov & P Hristov, New Quasi-Twisted Degenerate Ternary Linear Codes, preprint, Nov 2001. Email, 2002-2003.
Notes
|