lower bound:  62 
upper bound:  87 
Construction of a linear code [176,40,62] over GF(3): [1]: [176, 40, 62] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 176 with generating polynomials: 2*x^87 + x^86 + 2*x^85 + x^82 + x^81 + x^79 + x^78 + x^77 + x^71 + x^70 + 2*x^69 + x^68 + 2*x^67 + x^64 + x^63 + 2*x^61 + x^58 + 2*x^57 + 2*x^56 + x^55 + 2*x^53 + x^51 + 2*x^49 + x^48 + x^47 + 2*x^41 + 2*x^40 + x^20, x^87 + x^86 + x^85 + 2*x^83 + 2*x^82 + 2*x^80 + x^79 + x^78 + 2*x^77 + x^76 + 2*x^75 + 2*x^74 + x^73 + 2*x^72 + x^71 + 2*x^70 + 2*x^69 + 2*x^68 + x^66 + 2*x^65 + 2*x^64 + x^62 + 2*x^61 + x^60 + 2*x^59 + 2*x^58 + x^57 + 2*x^56 + x^55 + x^54 + 2*x^53 + 2*x^51 + 2*x^50 + 2*x^49 + x^48 + x^47 + 2*x^46 + x^45 + x^43 + x^42 + x^41 + 2*x^40 + x^39 + x^38 + 2*x^37 + 2*x^36 + x^35 + 2*x^34 + x^33 + 2*x^32 + 2*x^31 + 2*x^30 + x^29 + 2*x^28 + x^27 + x^26 + 2*x^25 + 2*x^23 + 2*x^22 + x^21 + 2*x^20 + 2*x^19 + x^18 + 2*x^17 + x^15 + 2*x^14 + 2*x^12 + x^10 + x^6 + x^4 + 2*x^2 + x + 1 last modified: 20210825
Lb(176,40) = 60 is found by shortening of: Lb(177,41) = 60 Var Ub(176,40) = 87 is found by considering shortening to: Ub(157,21) = 87 Da2
Var: From the VarshamovGilbert bound. Cf. R.R. Varshamov, Problems of the general theory of linear coding, Ph.D. thesis, Moscow State Univ., 1959. (Russian)
Notes
