lower bound: | 64 |
upper bound: | 89 |
Construction of a linear code [179,40,64] over GF(3): [1]: [3, 2, 2] Cyclic Linear Code over GF(3) Dual of the RepetitionCode of length 3 [2]: [176, 38, 64] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 176 with generating polynomials: x^85 + x^84 + 2*x^81 + x^79 + 2*x^78 + 2*x^77 + 2*x^76 + x^73 + 2*x^71 + 2*x^70 + 2*x^68 + x^67 + 2*x^66 + x^65 + 2*x^64 + x^62 + 2*x^61 + x^60 + 2*x^59 + 2*x^56 + 2*x^55 + 2*x^54 + x^53 + x^52 + x^51 + 2*x^49 + 2*x^47 + 2*x^45 + 2*x^44 + 2*x^43 + 2*x^41 + x^40 + x^38 + x^22, 2*x^87 + 2*x^85 + x^84 + x^83 + x^82 + x^79 + x^76 + x^75 + x^74 + 2*x^73 + x^72 + 2*x^71 + x^70 + x^69 + 2*x^68 + x^65 + x^64 + 2*x^63 + 2*x^61 + x^59 + 2*x^57 + x^56 + 2*x^55 + x^51 + x^50 + 2*x^49 + x^48 + x^47 + x^45 + 2*x^44 + x^43 + 2*x^40 + 2*x^39 + 2*x^34 + 2*x^31 + 2*x^30 + x^29 + 2*x^28 + x^26 + 2*x^25 + 2*x^24 + 2*x^22 + x^21 + x^18 + 2*x^17 + 2*x^15 + x^14 + 2*x^13 + x^10 + x^9 + x^8 + x^2 + 2*x + 1 [3]: [176, 40, 62] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 176 with generating polynomials: 2*x^87 + x^86 + 2*x^85 + x^82 + x^81 + x^79 + x^78 + x^77 + x^71 + x^70 + 2*x^69 + x^68 + 2*x^67 + x^64 + x^63 + 2*x^61 + x^58 + 2*x^57 + 2*x^56 + x^55 + 2*x^53 + x^51 + 2*x^49 + x^48 + x^47 + 2*x^41 + 2*x^40 + x^20, x^87 + x^86 + x^85 + 2*x^83 + 2*x^82 + 2*x^80 + x^79 + x^78 + 2*x^77 + x^76 + 2*x^75 + 2*x^74 + x^73 + 2*x^72 + x^71 + 2*x^70 + 2*x^69 + 2*x^68 + x^66 + 2*x^65 + 2*x^64 + x^62 + 2*x^61 + x^60 + 2*x^59 + 2*x^58 + x^57 + 2*x^56 + x^55 + x^54 + 2*x^53 + 2*x^51 + 2*x^50 + 2*x^49 + x^48 + x^47 + 2*x^46 + x^45 + x^43 + x^42 + x^41 + 2*x^40 + x^39 + x^38 + 2*x^37 + 2*x^36 + x^35 + 2*x^34 + x^33 + 2*x^32 + 2*x^31 + 2*x^30 + x^29 + 2*x^28 + x^27 + x^26 + 2*x^25 + 2*x^23 + 2*x^22 + x^21 + 2*x^20 + 2*x^19 + x^18 + 2*x^17 + x^15 + 2*x^14 + 2*x^12 + x^10 + x^6 + x^4 + 2*x^2 + x + 1 [4]: [179, 40, 64] Linear Code over GF(3) ConstructionX using [3] [2] and [1] last modified: 2021-08-26
Lb(179,40) = 62 VE Ub(179,40) = 89 is found by considering shortening to: Ub(160,21) = 89 Da2
VE: From repeated Varshamov-Edel lengthening.
Notes
|