lower bound: | 88 |
upper bound: | 106 |
Construction of a linear code [190,24,88] over GF(3): [1]: [12, 6, 6] Linear Code over GF(3) Extend the QRCode over GF(3)of length 11 [2]: [11, 6, 5] Cyclic Linear Code over GF(3) Puncturing of [1] at { 12 } [3]: [8, 3, 5] Linear Code over GF(3) Shortening of [2] at { 9 .. 11 } [4]: [182, 21, 88] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 182 with generating polynomials: 2*x^90 + x^89 + x^86 + x^84 + x^83 + x^80 + 2*x^79 + 2*x^78 + x^76 + 2*x^73 + x^71 + x^70 + 2*x^69 + x^68 + 2*x^66 + 2*x^63 + x^62 + 2*x^59 + 2*x^58 + x^57 + x^56 + x^55 + x^53 + x^52 + x^50 + 2*x^49 + x^48 + x^45 + 2*x^44 + x^43 + x^42 + 2*x^40 + 2*x^39 + 2*x^38 + x^37 + x^36 + x^35 + 2*x^34 + x^32 + 2*x^31 + 2*x^30 + 2*x^29 + x^27 + x^26 + 2*x^25 + 2*x^24 + 2*x^23 + x^19, x^90 + x^89 + x^88 + x^87 + 2*x^86 + 2*x^85 + x^84 + x^83 + 2*x^80 + 2*x^78 + x^77 + 2*x^76 + 2*x^74 + x^73 + x^72 + 2*x^71 + x^70 + 2*x^69 + 2*x^68 + x^67 + x^66 + 2*x^65 + 2*x^64 + x^63 + x^62 + 2*x^61 + 2*x^60 + x^58 + 2*x^57 + x^54 + 2*x^53 + x^52 + x^51 + 2*x^46 + 2*x^45 + x^43 + 2*x^42 + 2*x^39 + 2*x^38 + 2*x^36 + 2*x^35 + x^33 + x^32 + 2*x^31 + 2*x^29 + x^28 + 2*x^23 + x^22 + 2*x^21 + 2*x^20 + 2*x^19 + 2*x^4 + 2*x + 1 [5]: [182, 24, 83] Quasicyclic of degree 2 Linear Code over GF(3) QuasiCyclicCode of length 182 with generating polynomials: 2*x^89 + x^85 + 2*x^84 + x^83 + 2*x^82 + 2*x^79 + 2*x^78 + x^77 + 2*x^76 + x^75 + 2*x^74 + x^73 + 2*x^72 + x^71 + x^70 + 2*x^69 + x^68 + x^67 + x^64 + x^63 + x^62 + x^60 + 2*x^59 + 2*x^56 + 2*x^55 + 2*x^54 + x^52 + x^51 + x^50 + x^47 + x^46 + 2*x^45 + 2*x^44 + 2*x^42 + x^41 + x^39 + x^38 + 2*x^37 + 2*x^36 + x^34 + 2*x^31 + x^29 + x^27 + x^13, x^90 + 2*x^89 + x^87 + x^86 + 2*x^85 + 2*x^84 + 2*x^82 + 2*x^80 + 2*x^78 + 2*x^75 + 2*x^74 + x^73 + x^72 + 2*x^70 + 2*x^69 + x^67 + x^66 + 2*x^64 + 2*x^63 + 2*x^62 + 2*x^61 + 2*x^60 + 2*x^59 + x^58 + x^57 + x^56 + 2*x^55 + x^54 + 2*x^53 + x^52 + 2*x^51 + x^50 + 2*x^48 + x^47 + 2*x^46 + x^45 + x^43 + x^42 + 2*x^41 + 2*x^40 + 2*x^39 + x^38 + x^37 + x^36 + x^35 + 2*x^32 + 2*x^30 + x^29 + x^28 + 2*x^27 + 2*x^25 + x^24 + 2*x^23 + x^21 + x^20 + 2*x^19 + x^16 + x^15 + 2*x^14 + 2*x^13 + 2*x^12 + x^11 + 2*x^10 + x^8 + x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + x^2 + 2*x + 1 [6]: [190, 24, 88] Linear Code over GF(3) ConstructionX using [5] [4] and [3] last modified: 2021-08-26
Lb(190,24) = 84 is found by taking a subcode of: Lb(190,26) = 84 is found by lengthening of: Lb(189,26) = 84 BZ Ub(190,24) = 106 is found by considering shortening to: Ub(188,22) = 106 Da2
Da2: R.N. Daskalov, The linear programming bound for ternary linear codes, p. 423 in: IEEE International Symposium on Information Theory, Trondheim, 1994.
Notes
|