lower bound: | 26 |
upper bound: | 41 |
Construction of a linear code [114,57,26] over GF(4): [1]: [3, 3, 1] Cyclic Linear Code over GF(2^2) UniverseCode of length 3 [2]: [111, 54, 26] Constacyclic by w Linear Code over GF(2^2) ConstaCyclicCode generated by x^57 + w^2*x^56 + x^55 + w^2*x^54 + x^51 + x^50 + x^49 + x^47 + w^2*x^45 + w*x^43 + w*x^42 + w^2*x^40 + x^39 + x^38 + w^2*x^37 + w*x^36 + w*x^35 + w^2*x^34 + x^30 + w^2*x^27 + x^26 + w^2*x^25 + w*x^24 + x^23 + w*x^22 + w*x^20 + w^2*x^16 + x^14 + w*x^13 + x^11 + x^10 + x^7 + w^2*x^6 + w*x^5 + w*x^4 + w^2*x^2 + w^2*x + w with shift constant w [3]: [111, 57, 25] Constacyclic by w Linear Code over GF(2^2) ConstaCyclicCode generated by x^54 + w^2*x^53 + x^52 + x^51 + x^50 + w*x^49 + w^2*x^48 + w^2*x^47 + w*x^46 + x^45 + w^2*x^43 + x^42 + w^2*x^40 + w*x^37 + x^36 + x^35 + w^2*x^31 + x^28 + x^27 + w*x^25 + x^24 + x^23 + w^2*x^20 + w*x^19 + w^2*x^17 + w^2*x^16 + x^14 + w*x^13 + w^2*x^11 + x^10 + w^2*x^7 + w^2*x^3 + w*x^2 + w*x + 1 with shift constant w [4]: [114, 57, 26] Linear Code over GF(2^2) ConstructionX using [3] [2] and [1] last modified: 2024-07-10
Lb(114,57) = 24 is found by taking a subcode of: Lb(114,58) = 24 Var Ub(114,57) = 41 is found by considering shortening to: Ub(92,35) = 41 LP
Var: From the Varshamov-Gilbert bound. Cf. R.R. Varshamov, Problems of the general theory of linear coding, Ph.D. thesis, Moscow State Univ., 1959. (Russian)
Notes
|