lower bound: | 22 |
upper bound: | 34 |
Construction of a linear code [96,49,22] over GF(4): [1]: [96, 49, 22] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 96 stacked to height 2 with generating polynomials: w^2*x^47 + w^2*x^46 + x^45 + x^2, w^2*x^47 + w^2*x^46 + w*x^45 + w^2*x^44 + w^2*x^43 + w*x^42 + w^2*x^41 + w*x^40 + w*x^39 + x^38 + w^2*x^36 + x^35 + w*x^34 + w*x^32 + x^31 + w*x^30 + w^2*x^29 + w*x^28 + w*x^27 + w*x^26 + x^24 + w*x^22 + w*x^21 + w^2*x^20 + w^2*x^19 + w*x^18 + w*x^17 + w*x^16 + x^15 + w*x^14 + w*x^13 + x^11 + w^2*x^10 + x^9 + x^8 + x^7 + w^2*x^6 + x^4 + x^2, w*x^47 + w^2*x^46 + x^45 + w*x^44 + w^2*x^43 + x^42, x^47 + w^2*x^46 + w*x^45 + x^42 + x^41 + x^40 + w^2*x^39 + x^38 + w*x^37 + w^2*x^36 + w^2*x^35 + w*x^34 + w^2*x^33 + w*x^32 + w^2*x^31 + x^29 + x^28 + w*x^27 + x^26 + x^25 + w^2*x^23 + w^2*x^22 + w^2*x^21 + x^20 + x^18 + w*x^17 + w*x^16 + w*x^15 + x^13 + x^12 + x^11 + w^2*x^10 + w*x^9 + w*x^8 last modified: 2020-08-23
Lb(96,49) = 20 is found by taking a subcode of: Lb(96,50) = 20 Var Ub(96,49) = 34 is found by considering shortening to: Ub(83,36) = 34 LP
Var: From the Varshamov-Gilbert bound. Cf. R.R. Varshamov, Problems of the general theory of linear coding, Ph.D. thesis, Moscow State Univ., 1959. (Russian)
Notes
|