lower bound: | 25 |
upper bound: | 38 |
Construction of a linear code [99,46,25] over GF(4): [1]: [2, 2, 1] Cyclic Linear Code over GF(2^2) UniverseCode of length 2 [2]: [1, 1, 1] Cyclic Linear Code over GF(2^2) RepetitionCode of length 1 [3]: [96, 44, 24] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 96 with generating polynomials: x^46 + x^26, w*x^47 + x^46 + w^2*x^44 + w^2*x^43 + w*x^42 + w^2*x^41 + w^2*x^40 + w*x^38 + w^2*x^37 + x^36 + x^34 + x^32 + w^2*x^31 + w^2*x^30 + x^29 + w^2*x^27 + x^26 + w*x^25 + w*x^24 + x^23 + x^22 + w*x^21 + w^2*x^18 + w*x^17 + w*x^16 + w*x^15 + x^14 + x^13 + x^12 + w^2*x^11 + w*x^10 + w*x^9 + w^2*x^8 + x^7 + w^2*x^6 + x^5 + w*x^4 + x [4]: [96, 45, 24] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 96 with generating polynomials: w*x^47 + x^46 + w*x^45 + x^6, x^46 + x^45 + w^2*x^44 + w*x^43 + w^2*x^42 + w*x^39 + w^2*x^38 + w^2*x^37 + x^36 + x^35 + w^2*x^34 + x^33 + w^2*x^32 + x^31 + w^2*x^30 + x^29 + w^2*x^28 + x^27 + x^26 + w*x^24 + w*x^22 + x^21 + w*x^20 + x^18 + x^17 + w^2*x^15 + x^13 + w^2*x^12 + w^2*x^11 + w^2*x^10 + x^8 + w*x^7 + w^2*x^6 + w^2*x^5 + x^4 + w*x^2 + w^2*x [5]: [96, 46, 23] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 96 with generating polynomials: x^47 + x^13, w^2*x^47 + w^2*x^46 + w*x^44 + x^43 + w*x^40 + w*x^39 + w*x^38 + w*x^37 + w^2*x^36 + w*x^35 + w^2*x^34 + w*x^33 + w^2*x^32 + w^2*x^31 + x^30 + w^2*x^29 + w^2*x^28 + w^2*x^27 + w*x^26 + x^24 + w^2*x^23 + w^2*x^22 + w^2*x^21 + w^2*x^20 + w^2*x^19 + w^2*x^15 + w*x^13 + w*x^11 + w*x^9 + x^8 + w^2*x^7 + w^2*x^6 + w*x^4 + w*x^3 + w*x^2 + w*x + 1 [6]: [99, 46, 25] Linear Code over GF(2^2) ConstructionXX using [5] [4] [3] [2] and [1] last modified: 2020-07-29
Lb(99,46) = 24 is found by shortening of: Lb(102,49) = 24 Tol Ub(99,46) = 38 is found by considering shortening to: Ub(93,40) = 38 LP
Tol: L.M.G.M. Tolhuizen, Cooperating error-correcting codes and their decoding, Ph.D. thesis, Eindhoven Univ. of Techn., June 1996.
Notes
|