Bounds on the minimum distance of additive quantum codes
Bounds on [[19,6]]2
lower bound: | 5 |
upper bound: | 5 |
Construction
Construction of a [[19,6,5]] quantum code:
[1]: [[18, 6, 5]] quantum code over GF(2^2)
QuasiCyclicCode of length 18 stacked to height 2 with generating polynomials: x^5 + x^4, x^5 + x^3 + x^2 + w*x, w^2*x^5 + w^2*x^4 + w*x^3 + w^2*x, w*x^5 + w*x^4, w*x^5 + w*x^3 + w*x^2 + w^2*x, x^5 + x^4 + w^2*x^3 + x
[2]: [[19, 6, 5]] quantum code over GF(2^2)
ExtendCode [1] by 1
stabilizer matrix:
[1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0|1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0]
[0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0|0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0|0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0]
[0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0|0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0]
[0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0|0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0]
[0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0|0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0|0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2005-06-24
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024