Bounds on the minimum distance of additive quantum codes
Bounds on [[24,3]]2
lower bound: | 7 |
upper bound: | 8 |
Construction
Construction of a [[24,3,7]] quantum code:
[1]: [[24, 3, 7]] quantum code over GF(2^2)
cyclic code of length 24 with generating polynomial x^23 + x^22 + x^20 + x^18 + w*x^17 + x^15 + w*x^14 + w^2*x^13 + x^12 + w*x^10 + 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0|0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1|0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0|0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0|0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0|0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0|0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1|0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1|0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1]
last modified: 2005-06-27
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not even monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(grassl@ira.uka.de).
Last change: 23.10.2014