Bounds on the minimum distance of additive quantum codes
Bounds on [[25,7]]2
lower bound: | 5 |
upper bound: | 7 |
Construction
Construction of a [[25,7,5]] quantum code:
[1]: [[21, 7, 5]] quantum code over GF(2^2)
cyclic code of length 21 with generating polynomials [
x^20 + w^2*x^19 + w^2*x^18 + w*x^15 + w^2*x^14 + w^2*x^12 + x^10 + x^9 + w*x^7 + w*x^6 + w*x^5 + 1,
w*x^20 + w^2*x^19 + w*x^18 + x^16 + x^15 + w*x^14 + x^13 + w*x^12 + x^11 + w*x^10 + w^2*x^9 + w
]
[2]: [[25, 7, 5]] quantum code over GF(2^2)
ExtendCode [1] by 4
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0|0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0|0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0|0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0|0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0|0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0|0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0|0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0|0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0|0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0|0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0|0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0]
last modified: 2005-06-24
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not even monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(grassl@ira.uka.de).
Last change: 23.10.2014