Bounds on the minimum distance of additive quantum codes

Bounds on [[28,0]]2

lower bound:10
upper bound:10

Construction

Construction of a [[28,0,10]] quantum code:
[1]:  [[28, 0, 10]] self-dual Quantum code over GF(2^2)
     cyclic code of length 28 with generating polynomial w^2*x^27 + w^2*x^26 + w^2*x^25 + w*x^24 + w^2*x^23 + w*x^22 + x^21 + w^2*x^20 + w*x^18 + w^2*x^17 + x^16 + x^14 + x^13 + 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0|0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0|0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0|1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0|1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0|1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0|1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0|0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0]

last modified: 2006-04-18

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014