Bounds on the minimum distance of additive quantum codes
Bounds on [[35,24]]2
lower bound: | 4 |
upper bound: | 4 |
Construction
Construction of a [[35,24,4]] quantum code:
[1]: [[35, 25, 4]] quantum code over GF(2^2)
cyclic code of length 35 with generating polynomials [
w*x^34 + w^2*x^33 + w*x^32 + x^31 + x^29 + w^2*x^28 + w*x^26 + w*x^25 + w*x^23 + w^2*x^22 + w*x^21 + w^2*x^19 + w*x^17 + w^2*x^16 + w^2*x^15 + w^2*x^14 + w*x^13 + x^12 + x^11 + w*x^10 + w*x^9 + x^8 + x^7 + w^2*x^6 + x^5 + 1,
w^2*x^34 + x^33 + w^2*x^32 + w*x^31 + w*x^29 + x^28 + w^2*x^26 + w^2*x^25 + w^2*x^23 + x^22 + w^2*x^21 + x^19 + w^2*x^17 + x^16 + x^15 + x^14 + w^2*x^13 + w*x^12 + w*x^11 + w^2*x^10 + w^2*x^9 + w*x^8 + w*x^7 + x^6 + w*x^5 + w
]
[2]: [[35, 24, 4]] quantum code over GF(2^2)
Subcode of [1]
stabilizer matrix:
[1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1|0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1]
[0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1|1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1]
[0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0|0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1|0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0]
[0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1|0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1]
[0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1|0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0]
[0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0|0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1]
[0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0|0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0]
[0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0|0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1|0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0]
last modified: 2005-06-29
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024