Bounds on the minimum distance of additive quantum codes
Bounds on [[36,27]]2
lower bound: | 3 |
upper bound: | 4 |
Construction
Construction of a [[36,27,3]] quantum code:
[1]: [[35, 28, 3]] quantum code over GF(2^2)
cyclic code of length 35 with generating polynomial w^2*x^31 + x^29 + w*x^28 + w^2*x^27 + x^26 + w*x^24 + w^2*x^23 + w*x^22 + w^2*x^21 + w^2*x^20 + w^2*x^18 + x^17 + w*x^16 + w*x^15 + w*x^14 + w^2*x^12 + w*x^11 + x^10 + w^2*x^9 + x^8 + x^7 + x^6 + w^2*x^5 + w^2*x^4 + w*x^3 + 1
[2]: [[35, 27, 3]] quantum code over GF(2^2)
Subcode of [1]
[3]: [[36, 27, 3]] quantum code over GF(2^2)
ExtendCode [2] by 1
stabilizer matrix:
[1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0|0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0]
[0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0|1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0|0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0]
[0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0|0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0|0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0]
[0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0|0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0]
[0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0|0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-06
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024