Bounds on the minimum distance of additive quantum codes
Bounds on [[39,27]]2
lower bound: | 4 |
upper bound: | 4 |
Construction
Construction of a [[39,27,4]] quantum code:
[1]: [[39, 27, 4]] quantum code over GF(2^2)
QuasiCyclicCode of length 39 with generating polynomials: w*x^11 + w*x^10 + x^9 + x^7 + w^2*x^5 + x^4 + w*x^3 + w^2*x^2 + x + w, w^2*x^12 + w^2*x^11 + w*x^9 + w^2*x^8 + x^7 + x^6 + x^5 + w*x^3 + w^2*x^2 + 1, x^12 + x^11 + w^2*x^10 + w^2*x^9 + w^2*x^8 + x^7 + w*x^5 + w*x^4 + w^2*x^2 + 1
stabilizer matrix:
[1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1|0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0]
[0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0|1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1]
[0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1|0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0]
[0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0|0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1]
[0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0|0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1]
[0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1|0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1]
[0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1|0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1]
[0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1|0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0]
[0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1|0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0|0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1]
[0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1|0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0]
[0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0|0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1]
last modified: 2006-04-07
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024