Bounds on the minimum distance of additive quantum codes
Bounds on [[41,10]]2
lower bound: | 8 |
upper bound: | 12 |
Construction
Construction of a [[41,10,8]] quantum code:
[1]: [[36, 12, 8]] quantum code over GF(2^2)
Construction from a stored generator matrix
[2]: [[36, 10, 8]] quantum code over GF(2^2)
Subcode of [1]
[3]: [[41, 10, 8]] quantum code over GF(2^2)
ExtendCode [2] by 5
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024