Bounds on the minimum distance of additive quantum codes
Bounds on [[41,14]]2
lower bound: | 7 |
upper bound: | 10 |
Construction
Construction of a [[41,14,7]] quantum code:
[1]: [[39, 15, 7]] quantum code over GF(2^2)
constacyclic code generated by w^2*x^37 + x^36 + x^35 + x^34 + x^32 + w*x^31 + w^2*x^30 + w*x^29 + w*x^28 + x^27 + x^26 + w*x^25 + w*x^24 + x^22 + x^21 + w^2*x^20 + w*x^18 + w^2*x^17 + w^2*x^14 + x^13 + w^2*x^12 + 1 with shift constant w
[2]: [[39, 14, 7]] quantum code over GF(2^2)
Subcode of [1]
[3]: [[41, 14, 7]] quantum code over GF(2^2)
ExtendCode [2] by 2
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0|0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0|0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024