Bounds on the minimum distance of additive quantum codes

Bounds on [[44,0]]2

lower bound:14
upper bound:16

Construction

Construction type: Gra

Construction of a [[44,0,14]] quantum code:
[1]:  [[44, 0, 14]] self-dual Quantum code over GF(2^2)
     cyclic code of length 44 with generating polynomial w^2*x^43 + w*x^42 + w^2*x^41 + x^40 + x^39 + w^2*x^37 + x^36 + w^2*x^35 + w*x^33 + x^32 + w^2*x^30 + w^2*x^29 + x^27 + w*x^26 + x^24 + x^22 + x^21 + 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0|1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0|0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0|0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0|1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0|1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0|0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0|0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0]

last modified: 2006-04-14

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014