Bounds on the minimum distance of additive quantum codes
Bounds on [[44,34]]2
lower bound: | 3 |
upper bound: | 4 |
Construction
Construction of a [[44,34,3]] quantum code:
[1]: [[85, 77, 3]] quantum code over GF(2^2)
cyclic code of length 85 with generating polynomial w*x^84 + w^2*x^83 + w^2*x^81 + w^2*x^79 + w*x^78 + w^2*x^76 + w*x^74 + w^2*x^72 + w^2*x^71 + w^2*x^70 + w*x^69 + w^2*x^68 + x^67 + w^2*x^66 + w*x^64 + x^63 + x^62 + w^2*x^60 + x^59 + w^2*x^58 + w*x^57 + x^56 + x^54 + x^53 + w^2*x^52 + w*x^49 + w*x^46 + x^45 + w*x^44 + x^43 + x^42 + x^41 + x^40 + w*x^39 + w^2*x^38 + x^37 + x^36 + w^2*x^35 + w^2*x^34 + x^33 + w*x^30 + w*x^29 + w^2*x^28 + w^2*x^27 + x^26 + w^2*x^25 + x^24 + w*x^22 + x^21 + w^2*x^20 + w^2*x^19 + w*x^18 + x^17 + w*x^16 + w*x^15 + w^2*x^13 + x^12 + w^2*x^10 + w^2*x^9 + w^2*x^7 + x^6 + x^5 + x^4 + 1
[2]: [[42, 34, 3]] quantum code over GF(2^2)
Shortening of [1] at { 1, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 24, 29, 33, 37, 38, 40, 41, 43, 46, 48, 49, 50, 52, 54, 60, 62, 63, 64, 66, 69, 70, 73, 74, 79, 80, 82, 83, 84, 85 }
[3]: [[44, 34, 3]] quantum code over GF(2^2)
ExtendCode [2] by 2
stabilizer matrix:
[1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0|0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0]
[0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0|0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0]
[0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0|0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0]
[0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0|0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0|0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0|0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0]
[0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0|0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024