Bounds on the minimum distance of additive quantum codes
Bounds on [[45,14]]2
lower bound: | 8 |
upper bound: | 12 |
Construction
Construction of a [[45,14,8]] quantum code:
[1]: [[43, 14, 8]] quantum code over GF(2^2)
cyclic code of length 43 with generating polynomial x^42 + x^41 + w*x^40 + w*x^38 + w*x^37 + w^2*x^36 + x^35 + w*x^32 + w^2*x^31 + w*x^30 + x^29 + w*x^28 + w^2*x^27 + w*x^26 + x^23 + w^2*x^22 + w*x^21 + w*x^20 + w*x^18 + x^17 + x^16 + x^15 + 1
[2]: [[45, 14, 8]] quantum code over GF(2^2)
ExtendCode [1] by 2
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024