Bounds on the minimum distance of additive quantum codes

Bounds on [[45,21]]2

lower bound:7
upper bound:9

Construction

Construction type: EzermanGrasslLingOzbudakOzkaya

Construction of a [[45,21,7]] quantum code:
[1]:  [42, 12] Linear Code over GF(2^2)
     QuasiTwistedCyclicCode of length 42 and constant w^2 with generators: x^9 + w^2*x^8 + x^6 + w^2*x^5 + w^2*x^4 + w*x^3 + w^2*x^2 + w*x + 1,  w*x^20 + x^19 + w*x^18 + w*x^17 + w*x^16 + w*x^14 + w^2*x^13 + w*x^12 + w*x^11 + x^9 + w*x^8 + w*x^6 + w^2*x^4 + 1
[2]:  [[45, 21, 7]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 3

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 1|1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1|0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0|0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0]

last modified: 2024-06-15

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024