Bounds on the minimum distance of additive quantum codes
Bounds on [[45,22]]2
lower bound: | 6 |
upper bound: | 8 |
Construction
Construction of a [[45,22,6]] quantum code:
[1]: [[46, 22, 7]] quantum code over GF(2^2)
QuasiCyclicCode of length 46 stacked to height 2 with generating polynomials: x^22 + w*x^21 + x^20 + w*x^19 + w^2*x^18 + x^17 + w*x^16 + w^2*x^15 + w*x^14 + x^13 + w*x^11 + w^2*x^9 + w*x^8 + w*x^7 + x^6 + x^5 + x^3 + w^2*x^2 + 1, w^2*x^22 + w^2*x^20 + w^2*x^18 + x^17 + x^16 + x^14 + w^2*x^12 + w*x^11 + w*x^9 + w*x^7 + w^2*x^5 + x^4 + w^2*x^3 + w^2*x^2 + w^2, w*x^22 + w^2*x^21 + w*x^20 + w^2*x^19 + x^18 + w*x^17 + w^2*x^16 + x^15 + w^2*x^14 + w*x^13 + w^2*x^11 + x^9 + w^2*x^8 + w^2*x^7 + w*x^6 + w*x^5 + w*x^3 + x^2 + w, x^22 + x^20 + x^18 + w*x^17 + w*x^16 + w*x^14 + x^12 + w^2*x^11 + w^2*x^9 + w^2*x^7 + x^5 + w*x^4 + x^3 + x^2 + 1
[2]: [[45, 22, 6]] quantum code over GF(2^2)
Puncturing of [1] at { 46 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1|1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1]
[0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0|0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1]
[0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1|0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1]
[0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1]
[0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1|0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1]
[0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1|0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0|0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024