Bounds on the minimum distance of additive quantum codes
Bounds on [[46,27]]2
lower bound: | 5 |
upper bound: | 6 |
Construction
Construction of a [[46,27,5]] quantum code:
[1]: [[64, 44, 6]] quantum code over GF(2^2)
Quantum Twisted Code of length 64 with interval [ 1, 2, 3, 4 ] and parameter kappa 2
[2]: [[46, 26, 6]] quantum code over GF(2^2)
Shortening of [1] at { 3, 12, 18, 19, 21, 27, 35, 36, 39, 43, 45, 47, 48, 49, 50, 54, 57, 63 }
[3]: [[45, 27, 5]] quantum code over GF(2^2)
Shortening of the stabilizer code of [2] at 46
[4]: [[46, 27, 5]] quantum code over GF(2^2)
ExtendCode [3] by 1
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0]
[0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0|0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0]
[0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0|0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0]
[0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0|0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0]
[0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0|0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0]
[0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0|0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024