Bounds on the minimum distance of additive quantum codes

Bounds on [[46,28]]2

lower bound:5
upper bound:6

Construction

Construction of a [[46,28,5]] quantum code:
[1]:  [[122, 104, 5]] quantum code over GF(2^2)
     Construction from a stored generator matrix
[2]:  [[46, 28, 5]] quantum code over GF(2^2)
     Shortening of [1] at { 1, 3, 5, 8, 9, 10, 11, 12, 13, 15, 18, 19, 22, 23, 24, 25, 26, 28, 29, 31, 32, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 54, 55, 56, 58, 59, 62, 64, 65, 66, 69, 70, 71, 76, 78, 81, 83, 84, 86, 87, 89, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 109, 110, 111, 114, 115, 116, 117, 119, 120, 121, 122 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1|1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0]
      [0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0|0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1]
      [0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0|0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1]
      [0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1|0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1]
      [0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1|0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0|0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024