Bounds on the minimum distance of additive quantum codes

Bounds on [[46,5]]2

lower bound:10
upper bound:15

Construction

Construction of a [[46,5,10]] quantum code:
[1]:  [[48, 0, 14]] self-dual quantum code over GF(2^2)
     QuasiCyclicCode of length 48 stacked to height 2 with generating polynomials: 1,  w*x^23 + w*x^22 + w*x^19 + w*x^18 + w^2*x^16 + w*x^15 + w*x^12 + w*x^11 + w*x^10 + x^9 + w^2*x^6 + w^2*x^5 + x^4 + w*x^3 + w^2*x^2 + w*x + w,  w,  w^2*x^23 + w^2*x^22 + w^2*x^19 + w^2*x^18 + x^16 + w^2*x^15 + w^2*x^12 + w^2*x^11 + w^2*x^10 + w*x^9 + x^6 + x^5 + w*x^4 + w^2*x^3 + x^2 + w^2*x + w^2
[2]:  [[43, 5, 10]] quantum code over GF(2^2)
     Shortening of the stabilizer code of [1] at { 14, 17, 22, 23, 45 }
[3]:  [[46, 5, 10]] quantum code over GF(2^2)
     ExtendCode [2] by 3

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024