Bounds on the minimum distance of additive quantum codes

Bounds on [[47,35]]2

lower bound:4
upper bound:4

Construction

Construction of a [[47,35,4]] quantum code:
[1]:  [[63, 51, 4]] Quantum code over GF(2^2)
     Construction from a stored generator matrix
[2]:  [[47, 35, 4]] Quantum code over GF(2^2)
     Shortening of [1] at { 13, 18, 20, 34, 35, 37, 38, 39, 40, 41, 43, 48, 51, 56, 57, 61 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1|0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1|0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1]
      [0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1|0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1|0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0|0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1|0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1|0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0|0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0|0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1|0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1|0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014