Bounds on the minimum distance of additive quantum codes
Bounds on [[48,14]]2
lower bound: | 8 |
upper bound: | 12 |
Construction
Construction of a [[48,14,8]] quantum code:
[1]: [[51, 11, 10]] quantum code over GF(2^2)
cyclic code of length 51 with generating polynomials [
w*x^49 + x^47 + x^46 + x^45 + w^2*x^44 + x^43 + x^40 + w^2*x^38 + w^2*x^37 + x^34 + w*x^33 + x^32 + w^2*x^31 + w^2*x^29 + x^28 + w*x^26 + w*x^24 + w^2*x^22 + x^20 + 1,
w^2*x^49 + w*x^47 + w*x^46 + w*x^45 + x^44 + w*x^43 + w*x^40 + x^38 + x^37 + w*x^34 + w^2*x^33 + w*x^32 + x^31 + x^29 + w*x^28 + w^2*x^26 + w^2*x^24 + x^22 + w*x^20 + w
]
[2]: [[48, 14, 8]] quantum code over GF(2^2)
Shortening of the stabilizer code of [1] at { 12, 29, 46 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1|0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024