Bounds on the minimum distance of additive quantum codes

Bounds on [[48,30]]2

lower bound:5
upper bound:6

Construction

Construction of a [[48,30,5]] quantum code:
[1]:  [[122, 104, 5]] Quantum code over GF(2^2)
     Construction from a stored generator matrix
[2]:  [[48, 30, 5]] Quantum code over GF(2^2)
     Shortening of [1] at { 4, 5, 6, 8, 11, 13, 14, 17, 20, 22, 23, 25, 26, 27, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 47, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 75, 79, 80, 81, 83, 84, 85, 87, 91, 92, 93, 95, 99, 102, 103, 104, 105, 107, 111, 112, 114, 115, 117, 120, 121, 122 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0|0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1]
      [0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0|1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1|0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0]
      [0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0|1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1|1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0|0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1|0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1]
      [0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1|0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1|1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0|1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1|0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1|0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1|0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0|1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1|0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1|0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0|1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0|0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014