Bounds on the minimum distance of additive quantum codes
Bounds on [[49,21]]2
lower bound: | 7 |
upper bound: | 10 |
Construction
Construction of a [[49,21,7]] quantum code:
[1]: [[51, 19, 9]] quantum code over GF(2^2)
cyclic code of length 51 with generating polynomials [
w*x^50 + w*x^47 + w^2*x^46 + x^45 + w*x^44 + x^42 + x^41 + x^38 + w^2*x^36 + w^2*x^34 + x^33 + x^31 + x^27 + w^2*x^26 + w*x^25 + w^2*x^24 + w*x^23 + w^2*x^22 + w*x^21 + w^2*x^20 + w*x^19 + w^2*x^18 + w*x^16 + 1,
w^2*x^50 + w^2*x^47 + x^46 + w*x^45 + w^2*x^44 + w*x^42 + w*x^41 + w*x^38 + x^36 + x^34 + w*x^33 + w*x^31 + w*x^27 + x^26 + w^2*x^25 + x^24 + w^2*x^23 + x^22 + w^2*x^21 + x^20 + w^2*x^19 + x^18 + w^2*x^16 + w
]
[2]: [[49, 21, 7]] quantum code over GF(2^2)
Shortening of the stabilizer code of [1] at { 50 .. 51 }
stabilizer matrix:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0|1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1|0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0]
last modified: 2006-04-03
Notes
- All codes establishing the lower bounds where constructed using MAGMA.
- Most upper bounds on qubit codes for n≤100 are based on a MAGMA program by Eric Rains.
- For n>100, the upper bounds on qubit codes are weak (and not necessarily monotone in k).
- Some additional information can be found in the book by Nebe, Rains, and Sloane.
- My apologies to all authors that have contributed codes to this table for not giving specific credits.
This page is maintained by
Markus Grassl
(codes@codetables.de).
Last change: 10.06.2024