Bounds on the minimum distance of additive quantum codes

Bounds on [[60,18]]2

lower bound:10
upper bound:15

Construction

Construction of a [[60,18,10]] quantum code:
[1]:  [[60, 18, 10]] Quantum code over GF(2^2)
     cyclic code of length 60 with generating polynomial w^2*x^58 + w^2*x^57 + w*x^56 + w^2*x^55 + w*x^54 + w*x^53 + x^51 + w^2*x^49 + w*x^48 + w*x^47 + w^2*x^46 + x^44 + w^2*x^42 + x^40 + w*x^37 + w*x^36 + w*x^35 + w^2*x^34 + x^32 + w^2*x^31 + x^30 + w*x^29 + w^2*x^28 + w^2*x^26 + x^24 + x^23 + w*x^21 + 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1|1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0|1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0|1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0|1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0|0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0|0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1|0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1|1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0|1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1|1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0|0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0|0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0|1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0|0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0|0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1|0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1|0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0|1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0|1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0|0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0|1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0|1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1|0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0|0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1|1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1|0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0|1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1|1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1|0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0|0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1|0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0|1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1|0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1|0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1|1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1|0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0|1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1|0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1|0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1|0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0|1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1|0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]

last modified: 2008-02-16

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014