Bounds on the minimum distance of additive quantum codes

Bounds on [[61,41]]2

lower bound:5
upper bound:6

Construction

Construction of a [[61,41,5]] quantum code:
[1]:  [[64, 38, 7]] Quantum code over GF(2^2)
     quantum twisted code of length 64 with interval [ 1, 2, 3, 4, 5 ] and parameter kappa 2
[2]:  [[61, 41, 5]] Quantum code over GF(2^2)
     Shortening of the stabilizer code of [1] at { 2, 27, 48 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1|0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0|0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0|0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0|0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1|0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0|0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0|0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0|0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0|0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0|0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0|0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1|0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1|0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0|0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 23.10.2014