lower bound: | 32 |
upper bound: | 49 |
Construction of a linear code [115,47,32] over GF(4): [1]: [3, 3, 1] Cyclic Linear Code over GF(2^2) UniverseCode of length 3 [2]: [112, 44, 32] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 112 with generating polynomials: x^53 + x^51 + x^47 + x^41, w^2*x^55 + w^2*x^54 + w^2*x^53 + x^52 + w^2*x^51 + w^2*x^49 + x^48 + w^2*x^47 + x^46 + w^2*x^45 + x^44 + w*x^43 + x^42 + w*x^39 + w*x^37 + w*x^36 + x^35 + w^2*x^33 + w^2*x^32 + w*x^31 + x^29 + x^27 + w^2*x^26 + w^2*x^25 + x^24 + w^2*x^23 + w^2*x^22 + x^21 + w*x^20 + w*x^19 + w*x^18 + x^17 + w^2*x^16 + x^14 + w*x^13 + x^12 + w*x^10 + w^2*x^9 + w*x^7 + w^2*x^6 + x^5 + w*x^4 + w*x^3 + x^2 + w^2 [3]: [112, 47, 31] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 112 with generating polynomials: x^9 + x^6 + x^4 + x^2 + x + 1, w*x^55 + x^54 + w^2*x^53 + w^2*x^52 + x^49 + w*x^48 + w^2*x^46 + x^45 + x^42 + x^41 + x^40 + x^39 + w^2*x^38 + w^2*x^37 + w^2*x^36 + w^2*x^35 + w^2*x^34 + x^33 + w*x^32 + x^30 + w^2*x^29 + w*x^28 + w*x^27 + w*x^25 + w^2*x^24 + w*x^23 + w^2*x^22 + w*x^21 + x^20 + w^2*x^19 + w^2*x^17 + x^16 + x^15 + w^2*x^14 + x^12 + w*x^10 + w*x^9 + w^2*x^8 + w^2*x^7 + x^6 + w^2*x^5 + w^2*x^4 + x^3 + x^2 + x + 1 [4]: [115, 47, 32] Linear Code over GF(2^2) ConstructionX using [3] [2] and [1] last modified: 2024-09-02
Lb(115,47) = 31 Var Ub(115,47) = 49 is found by considering shortening to: Ub(99,31) = 49 LP
Var: From the Varshamov-Gilbert bound. Cf. R.R. Varshamov, Problems of the general theory of linear coding, Ph.D. thesis, Moscow State Univ., 1959. (Russian)
Notes
|