lower bound: | 18 |
upper bound: | 26 |
Construction of a linear code [73,38,18] over GF(4): [1]: [1, 1, 1] Cyclic Linear Code over GF(2^2) RepetitionCode of length 1 [2]: [72, 37, 18] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 72 stacked to height 2 with generating polynomials: x + 1, w^2*x^31 + w^2*x^30 + w^2*x^28 + w*x^27 + w*x^26 + w^2*x^25 + w*x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + w^2*x^18 + w^2*x^17 + w^2*x^15 + w^2*x^14 + w*x^13 + w*x^12 + w^2*x^11 + x^10 + x^9 + w^2*x^8 + x^7 + w^2*x^6 + x^5 + w*x^4 + w*x^3 + w*x^2 + w*x, 0, x^34 + x^32 + x^30 + x^28 + x^26 + x^24 + x^22 + x^20 + x^18 + x^16 + x^14 + x^12 + x^10 + x^8 + x^6 + x^4 + x^2 + 1 [3]: [72, 38, 17] Quasicyclic of degree 2 Linear Code over GF(2^2) QuasiCyclicCode of length 72 stacked to height 2 with generating polynomials: 1, w^2*x^33 + w^2*x^32 + w^2*x^30 + w^2*x^29 + w^2*x^28 + w^2*x^27 + x^26 + w^2*x^24 + w*x^23 + w^2*x^22 + x^21 + w*x^19 + w^2*x^18 + w^2*x^17 + w^2*x^15 + w*x^12 + w^2*x^11 + w*x^9 + w^2*x^8 + w^2*x^7 + w*x^6 + w*x^5 + w^2*x^4 + w*x^3 + x + w^2, 0, x^34 + x^32 + x^30 + x^28 + x^26 + x^24 + x^22 + x^20 + x^18 + x^16 + x^14 + x^12 + x^10 + x^8 + x^6 + x^4 + x^2 + 1 [4]: [73, 38, 18] Linear Code over GF(2^2) ConstructionX using [3] [2] and [1] last modified: 2024-09-02
Lb(73,38) = 16 is found by shortening of: Lb(80,45) = 16 BZ Ub(73,38) = 26 follows by a one-step Griesmer bound from: Ub(46,37) = 6 is found by considering shortening to: Ub(39,30) = 6 LP
LP: Follows from the linear programming bound.
Notes
|