lower bound: | 24 |
upper bound: | 33 |
Construction of a linear code [90,44,24] over GF(5): [1]: [3, 2, 2] Cyclic Linear Code over GF(5) Dual of the RepetitionCode of length 3 [2]: [87, 42, 24] Cyclic Linear Code over GF(5) CyclicCode of length 87 with generating polynomial x^45 + 4*x^44 + 4*x^43 + 2*x^42 + 2*x^41 + 2*x^40 + 3*x^39 + 4*x^38 + x^37 + x^35 + 2*x^34 + 3*x^33 + x^32 + 2*x^31 + 4*x^30 + 4*x^29 + 2*x^28 + 4*x^27 + 2*x^26 + 3*x^25 + 4*x^24 + 3*x^23 + 2*x^22 + x^21 + 2*x^20 + 3*x^19 + x^18 + 3*x^17 + x^16 + x^15 + 3*x^14 + 4*x^13 + 2*x^12 + 3*x^11 + 4*x^10 + 4*x^8 + x^7 + 2*x^6 + 3*x^5 + 3*x^4 + 3*x^3 + x^2 + x + 4 [3]: [87, 44, 22] Cyclic Linear Code over GF(5) CyclicCode of length 87 with generating polynomial x^43 + 3*x^42 + 4*x^40 + 3*x^39 + 4*x^36 + 2*x^35 + 4*x^34 + 3*x^32 + 3*x^30 + 4*x^29 + 2*x^28 + 3*x^27 + 2*x^26 + 4*x^25 + x^24 + 3*x^23 + 2*x^20 + 4*x^19 + x^18 + 3*x^17 + 2*x^16 + 3*x^15 + x^14 + 2*x^13 + 2*x^11 + x^9 + 3*x^8 + x^7 + 2*x^4 + x^3 + 2*x + 4 [4]: [90, 44, 24] Linear Code over GF(5) ConstructionX using [3] [2] and [1] last modified: 2024-07-10
Lb(90,44) = 22 is found by shortening of: Lb(94,48) = 22 Var Ub(90,44) = 37 follows by a one-step Griesmer bound from: Ub(52,43) = 7 is found by considering shortening to: Ub(33,24) = 7 is found by considering truncation to: Ub(32,24) = 6 is found by construction B: [consider deleting the (at most) 20 coordinates of a word in the dual]
Notes
|