Bounds on the minimum distance of additive quantum codes

Bounds on [[37,17]]2

lower bound:6
upper bound:7

Construction

Construction type: DastbastehShivj

Construction of a [[37,17,6]] quantum code:
[1]:  [35, 10 : 20, 14] GF(2)-additive Code over GF(2^2)
     additive cyclic code of length 35 with generating polynomial w*x^32 + w^2*x^30 + x^29 + x^28 + w^2*x^27 + x^26 + w*x^25 + x^23 + x^22 + w^2*x^21 + w^2*x^18 + x^17 + w^2*x^15 + w*x^14 + w*x^13 + x^12 + x^10 + 1
[2]:  [[37, 17, 6]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 2

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0|1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0]
      [0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0|0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1|0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1]
      [0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1|0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0]
      [0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1|0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0|0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1|0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0|0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0|0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1]

last modified: 2024-05-06

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024