Bounds on the minimum distance of additive quantum codes

Bounds on [[52,24]]2

lower bound:8
upper bound:10

Construction

Construction type: DastbastehShivj

Construction of a [[52,24,8]] quantum code:
[1]:  [51, 14 : 28, 17] GF(2)-additive Code over GF(2^2)
     additive QuasiCyclicCode of length 51 stacked to height 2 with generating polynomials: w^2*x^49 + w^2*x^47 + w^2*x^46 + x^44 + x^43 + w^2*x^42 + w*x^41 + w*x^39 + w*x^38 + x^36 + x^35 + w*x^33 + x^32 + w^2*x^31 + x^29 + w*x^28 + w*x^26 + w^2*x^25 + w*x^23 + x^22 + w^2*x^21 + x^20 + w*x^18 + w^2*x^17 + w*x^15 + w*x^13 + 1,  x^50 + w*x^49 + w^2*x^47 + x^46 + w^2*x^45 + x^43 + w^2*x^42 + w^2*x^41 + w*x^40 + w*x^39 + w^2*x^37 + x^35 + w*x^34 + w*x^32 + w^2*x^31 + x^30 + w^2*x^28 + x^26 + w*x^23 + w*x^22 + w*x^20 + w*x^18 + x^17 + w^2*x^16 + x^15 + w*x^13 + w
[2]:  [[52, 24, 8]] quantum code over GF(2^2)
     QuantumConstructionX applied to [1] with e = 1

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1|1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0|0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1]
      [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1|0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0|0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1]
      [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0|0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1]
      [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1]
      [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0|0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1]
      [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1|0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0|0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1|0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1]

last modified: 2024-05-06

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024