Bounds on the minimum distance of additive quantum codes

Bounds on [[70,48]]2

lower bound:6
upper bound:7

Construction

Construction type: WangLiLvSong,

Construction of a [[70,48,6]] quantum code:
[1]:  [[70, 48, 6]] quantum code over GF(2^2)
     ConstructionX from linear cyclic codes
Construction from a stored generator matrix

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0|1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0|0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0|0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0]
      [0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0|0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0]
      [0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1|0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1]
      [0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0|0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0]
      [0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0|0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1]
      [0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1|0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1]
      [0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1|0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1]
      [0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0]
      [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1]

last modified: 2024-04-24

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 10.06.2024