Bounds on the minimum distance of additive quantum codes

tables for n≤30, n≤128

n/k01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
111                                                 
2211                                                
32111                                               
422211                                              
5332111                                             
64322211                                            
733222111                                           
8433322211                                          
94333222111                                         
1044433222211                                        
11554333222111                                       
126544433222211                                      
1355444333222111                                     
146554-544433222211                                    
156555444333222111                                   
16666554-544333222211                                  
177765-654-54-544433222111                                 
188765-65-655444332222211                                
197765-65-65-654-5443-4332222111                               
20876-76-765-65-64-54-5443-4332222211                              
21876-76-76-765-65-64-54-5443-4333222111                             
2287-86-86-76-76-75-65-65-64-54-5443-4332222211                            
238-97-97-86-86-76-75-75-65-64-64-54-5443-4332222111                           
248-108-97-87-86-86-76-75-75-65-65-64-54-5443-4332222211                          
258-997-87-87-87-86-75-75-75-65-64-64-54-5443-4332222111                         
268-1098-98-987-86-86-86-75-75-65-65-64-54-5443-4332222211                        
279-109998-97-86-86-86-86-75-75-65-654-54-5443-4332222111                       
2810101098-97-96-86-86-86-86-76-765-65-64-54443-4332222211                      
291111109-108-97-97-96-86-86-86-76-765-65-64-54-54443-4332222111                     
301211109-108-108-97-97-97-86-86-86-76-75-65-65-654-54443-4332222211                    
3110-1211109-108-108-107-97-97-96-86-86-86-75-75-65-65-64-54-54443-4332222111                   
3210-121110-119-118-108-108-107-107-97-97-86-86-86-76-7664-64-54-54443-4332222211                  
3310-121110-119-118-118-108-108-107-107-97-96-86-86-86-76-765-64-64-54-54443-4332222111                 
3410-1211-1210-129-118-118-118-108-108-107-107-96-96-86-86-86-76-75-65-64-64-54-54443-4332222211                
3511-1311-1310-129-129-118-118-118-108-107-107-107-97-97-86-86-86-75-75-65-65-64-54-54443-4332222111               
3612-1411-1310-1210-129-128-118-118-118-118-108-108-108-97-96-86-86-85-75-75-65-64-64-54-5443-43-4332222211              
3711-1411-1310-1210-129-128-128-118-118-118-118-108-108-107-96-86-86-85-75-75-65-64-64-64-54-543-43-43-4332222111             
3812-1411-1310-1310-139-128-128-128-128-118-118-108-108-107-96-96-96-86-86-75-75-65-65-64-64-54-543-43-43-4332222211            
3911-1411-1310-1310-139-139-128-128-128-128-118-118-108-107-107-97-96-86-86-85-75-75-65-64-64-64-54-543-43-43-432-32222111           
4012-1411-1410-1410-1310-139-138-138-128-128-128-118-118-107-107-107-96-96-86-86-86-75-75-65-65-64-64-544443332222211          
4112-1511-1511-1411-1410-139-138-138-138-128-128-128-118-117-107-107-106-96-96-86-86-86-75-75-65-64-64-54-544443322222111         
4212-1612-1512-1411-1410-149-139-139-139-138-128-128-128-117-117-107-107-107-97-97-87-86-86-75-75-65-65-64-54-54443-43322222211        
4313-1613-1512-1411-1410-1410-149-139-139-138-138-128-128-128-118-117-107-107-107-97-97-86-86-85-75-75-65-64-64-54-5443-43-43322222111       
4414-1613-1512-1511-1510-1410-149-149-149-138-138-128-128-128-128-117-117-107-107-107-97-96-86-85-85-75-75-65-65-64-54-5443-43-43322222211      
4513-1613-1512-1511-1510-1510-149-149-149-149-138-138-138-128-128-128-117-117-107-107-107-96-96-86-85-85-75-75-65-64-64-54-5443-43-43322222111     
4614-1613-1612-1611-1510-1510-1510-159-149-149-149-138-138-128-128-128-117-117-117-107-107-107-97-86-86-86-86-75-65-65-65-64-54-5443-43-43322222211    
4713-1713-1712-1611-1610-1510-1510-1510-159-149-149-148-138-138-138-128-127-117-117-107-107-107-97-96-86-86-86-75-75-65-65-64-64-54-5443-43-43322222111   
4814-1813-1712-1611-1611-1610-1510-1510-159-159-149-148-148-148-138-128-128-127-117-117-107-107-107-96-96-86-86-86-76-75-65-65-65-64-54-5443-43-43322222211  
4913-1813-1712-1612-1611-1611-1610-1510-159-159-159-149-148-148-138-138-128-127-127-117-117-107-107-106-96-96-86-86-86-75-75-65-65-64-64-54-5443-43-43322222111 
5014-1813-1712-1712-1712-1611-1610-1610-1610-159-159-159-149-148-148-138-138-128-128-128-118-117-107-106-106-96-96-86-86-85-75-75-65-65-65-64-54-5443-43-43322222211
n/k01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950


This page is maintained by Markus Grassl (grassl@ira.uka.de). Last change: 30.12.2011